THE POWER THAT LIES WITHIN...

...data-capture and list segmentation. It's an incredibly important part of marketing that many businesses don't ever realise. In this issue, Mike Yates from 121 Business looks at how your business can benefit from the power of data and segmentation.

First of all let's cover data-capture. Our golden goal to data-capture is 'Can I have your first and last name, email address, full address postcode and telephone number?'. Or worst case 'Can I have your first and last name plus email address?'.

We can data-capture in a number of ways - however the most powerful form of data capture is where prospects 'opt-in' of their own accord. They may find you on the internet, at an event, walk into your premises - however they find you, your first priority needs to be to ask them for their details. This is a pre-requisite on any website now - so not only does your website serve as an educational and informational platform, it also serves to collect prospects names by some form of data exchange, such as a downloadable (or hard copy) gift which is normally informational.

One of the reasons that data-capture is so important is that one of the biggest myths about websites especially is that people will discover your website and either contact you or buy. Less than 1% of people that visit your website are likely to contact or buy from you. This is due to a variety of reasons – the main one being they simply don't know you well enough yet. They have to get to know, like and trust you to feel comfortable in going to the next stage.

This also leads onto another important part of marketing following data-capture which is keeping in touch with people who are in your list on a regular basis, sending them content-rich information and educating them as to various aspects of the solutions that you can offer them should they decide to use your services.

There are a couple of fall down points here for the majority of businesses. The first one being that they don't have the marketing software in place to capture and hold data (their list). The second (more common) is that they don't keep in touch with their list on a regular basis. The minimum standard you should be looking for here is around every two weeks to send some content-rich information that you feel your target market finds of interest.

One of the comments I received from a client recently was the realisation that 'the more emails and contacts I seem to send, the more I seem to sell!' (interesting that...). There is another strategy that we need to focus on when we are carrying out effective data-capture. That is list segmentation. What we need to understand here is that
everyone on your list is different. Something else you will discover is that the 80/20 rule also comes into play here in that 80% of the purchasing within your client base is likely to be carried out by 20% of your client base (if you slice your list another way you are also likely to find out that around 20% of your clients will give you 80% of the headaches on a day to day basis! But that's for another time!). The top 20% of your list must be identified and treated in a very different way than the rest. They should be treated as the 'Gold' within your list. They should be first to receive offers, free gifts, promotions etc.

"The top 20% of your list must be identified and treated in a very different way." - Mike Yates

However list-segmentation goes much further than this – as you start to focus on the commonalities of different groups within your list you will start to discover that you can split them into groups and focus your marketing messages accordingly. The first segmentation should always be between buyers and non-buyers with the goal for non-buyers aiming to help them make that first purchase. The goal for people who have already bought is also to work out how you can increase the average sale value and their frequency of spend by asking the simple question: "If this person in my list has bought 'X', then what else could they buy?"

"Otoform® Xpand"

- proportional expansion during the ear impression
- ideal for soft ear tissue and hearing protection
- especially creamy consistency for an easy application

Mike Yates

- Mechanosensory hair cells are the receptor cells of hearing and balance. Hair cells are sensitive to death from exposure to therapeutic drugs with ototoxic side effects, including aminoglycoside antibiotics and cisplatin. We recently showed that the induction of heat shock protein 70 (HSP70) inhibits ototoxic drug-induced hair cell death. Here, we examined the mechanisms underlying the protective effect of HSP70. In response to heat shock, HSP70 was induced in glia-like supporting cells but not in hair cells. Adenovirus-mediated infection of supporting cells with Hsp70 inhibited hair cell death. Coculture with heat-shocked utricles protected nonheat-shocked utricles against hair cell death. When heat-shocked utricles from Hsp70-/− mice were used in cocultures, protection was abolished in both the heat-shocked utricles and the nonheat-shocked utricles. HSP70 was detected by ELISA in the media surrounding heat-shocked utricles, and depletion of HSP70 from the media abolished the protective effect of heat shock, suggesting that HSP70 is secreted by supporting cells. Together our data indicate that supporting cells mediate the protective effect of HSP70 against hair cell death, and they suggest a major role for supporting cells in determining the fate of hair cells exposed to stress.


- OBJECTIVES/HYPOTHESIS: To examine the relationship between hearing and connexin 43, a dominant gap junctional protein in the central nervous system. STUDY DESIGN: Original research. METHODS: Connexin 43 heterozygous mice are used to assess its mutational effect on hearing. Results are compared to controls consisting of connexin 43, wild type and CBA/J mice. Hearing is assessed using auditory brainstem response and distortion product otoacoustic emissions tests. Distribution of connexin 43 in the organ of Corti and the retrocochlear auditory centers (eighth nerve, cochlear nucleus, olivary complex, lateral lemniscus, and inferior colliculus, respectively) is examined. Fluorescent markers are used to elucidate cell type differences. RESULTS: Mean click auditory brainstem response threshold for the young connexin 43 heterozygous mice (3-4 months) was 36.7±12.6 dB compared to 25±0 dB for control mice (P<0.05). Mean threshold difference became more pronounced (68±7.5 dB vs. 31±2.2 dB) at 10 months (P<0.05). Tonal auditory brainstem response testing showed elevated thresholds (>60 dB) at all frequencies (4-32 kHz) compared to the controls. Distortion product otoacoustic emissions (DPOAE) were present in all the mice, although the older connexin 43 heterozygous mice responded at higher thresholds. The pattern of connexin 43 immunoreactivity was distinctive from connexin 26 and 30, showing minimal presence in the organ of Corti but robustly present in the retrocochlear centres. CONCLUSION: Connexin 43 heterozygous mice demonstrated greater degree of hearing loss compared to age-matched controls. It is abundantly found in the retrocochlear auditory centres. The mechanism of hearing loss in these mice does not appear to be related to hair cell loss.


- In this study, the authors examined the ability of subjects with cochlear implants (CIs) to discriminate voice gender and how this ability evolved as a function of CI experience. The authors presented a continuum of voice samples created by voice morphing, with 9 intermediate acoustic parameter steps between a typical male and a typical female. This method allowed for the evaluation of gender categorization not only when acoustical features were specific to gender but also for more ambiguous cases, when fundamental frequency or formant distribution were located between typical values. Results showed a global, though variable, deficit for voice gender categorization in CI recipients compared with subjects with normal hearing. This deficit was stronger for ambiguous stimuli in the voice continuum: Average performance scores for CI users were 58% lower than average scores for subjects with normal hearing in cases of ambiguous stimuli and 19% lower for typical male and female voices. The authors found no significant improvement in voice gender categorization with CI experience.